Download A parallel 3D digital wave guide mesh model with tetrahedral topology for room acoustic simulation
Following a summary of the basic principles of 3D waveguide mesh modelling and the context of its application to room acoustic simulation, this paper presents a detailed analysis of the tetrahedral mesh topology and describes its implementation on a parallel computer model. Its structural characteristics are analysed, with particular emphasis on how they influence execution speed. Performance deterioration due to communication overhead in the parallelised model is discussed. Theoretical predictions are compared with data from performance tests carried out on different computer platforms and both are contrasted with the corresponding results from the rectilinear model, in order to assess the practical efficiency of the model. Objective validation tests are reported and discussed.
Download 2-D digital waveguide mesh topologies in room acoustics modelling
Digital waveguide mesh models have provided an accurate and efficient method of modelling the properties of many resonant structures, including acoustic spaces. 2-D rectilinear and triangular mesh structures have been used extensively in the past to model plates and membranes and are presented here as potential analogues to 2-D acoustic spaces. Impulse response measurements are taken and comparisons are made regarding the spectral content and the associated properties when compared with standard room acoustic parameters. Enhanced mesh structures are examined using frequency warping techniques and high-resolution sampling rates. The 2-D triangular mesh is shown to be considerably superior to the rectilinear mesh in terms of the measurements taken, with a further significant improvement being made by using the same mesh oversampled to a much higher resolution to improve the bandwidth of the measured impulse responses.
Download Digital Waveguide Mesh Modelling Of Room Acoustics: Surround-Sound, Boundaries And Plugin Implementation
Digital waveguide mesh models have provided an accurate and efficient method of modelling the properties of many resonant structures, including acoustic spaces. 2-D rectilinear and triangular mesh structures have been used extensively in the past to model plates and membranes and as potential analogues to 2-D acoustic spaces. This paper looks at current developments relating to this technique and attempts to highlight potential ways forward for this research. This includes an investigation into the potential suitability of this technique for surround-sound applications and a realtime implementation as a VST plugin.
Download CYMATIC: A tactile controlled physical modelling instrument
The recent trend towards the virtual in music synthesis has lead to the inevitable decline of the physical, inserting what might be described as a ‘veil of tactile paralysis’ between the musician and the sound source. The addition of tactile and gestural interfaces to electronic musical instruments offers the possibility of moving some way towards reversing this trend. This paper describes a new computer based musical instrument, known as Cymatic, which offers gestural control as well as tactile and proprioceptive feedback via a force feedback joystick and a tactile feedback mouse. Cymatic makes use of a mass/spring physical modelling paradigm to model multi-dimensional, interconnectable resonating structures that can be played in real-time with various excitation methods. It therefore restores to a degree the musician’s sense of working with a true physical instrument in the natural world. Cymatic has been used in a public performance of a specially composed work, which is described.